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Abstract Both abiotic and biotic factors govern distributions
of estuarine vegetation, and experiments can reveal effects of
these drivers under current and future conditions. In upper San
Francisco Estuary (SFE), increased salinity could result from
sea level rise, levee failure, or water management. We used
mesocosms to test salinity effects on, as well as competition
between, the native Stuckenia pectinata (sago pondweed) and
invasive Egeria densa (Brazilian waterweed), species with
overlapping distributions at the freshwater transition in SFE.
Grown alone at a salinity of 5, E. densa decreased fivefold in
biomass relative to the freshwater treatment and decomposed
within 3 weeks at higher salinities. In contrast, S. pectinata
biomass accumulated greatly (~4× initial) at salinities of 0 and
5, doubled at 10, and was unchanged at 15. When grown
together in freshwater, S. pectinata produced 75 % less bio-
mass than in monoculture and significantly more nodal roots
(suggesting increased nutrient foraging). At a salinity of 5, a
decline in E. densa performance coincided with a doubling of
S. pectinata shoot density. Additional experiments on E.
densa showed elevated temperature (26 and 30 °C) sup-
pressed growth especially at higher salinities (≥5). We con-
clude that salinity strongly influences distributions of both
species and that competition from E. densamay impose limits
on S. pectinata abundance in the fresher reaches of SFE. With

a salinity increase of 5, S. pectinata is likely to maintain its
current distribution while spreading up-estuary at the expense
of E. densa, especially if increased temperature also reduces
E. densa biomass.
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Introduction

Species distributions along strong abiotic gradients are deter-
mined largely by differential tolerances to environmental
stressors but can also be influenced by biotic interactions
(Purer 1942; Connell 1972; Paine 1974; Dunson and Travis
1991). In estuaries, the gradient in salinity from ocean to river
leads plant species to sort in order of their capacities to with-
stand or avoid osmotic stress (Odum 1988), along with their
abilities to compete for space or other resources in increasing-
ly fresher, and presumably more benign, conditions (Crain
et al. 2004). Effective conservation and management of estu-
arine plant assemblages rely upon understanding the forces
that regulate them, especially as human actions lead the abi-
otic and biotic context of the habitat to change in multiple
ways.

Changes in estuarine conditions are underway at both glob-
al and local scales. Global climate change is leading rising
seas to push saline waters up estuaries while the greenhouse
effect increases temperatures (Titus et al. 1991; Scavia et al.
2002; Walther et al. 2002; Najjar et al. 2010). Use and man-
agement of freshwater is shifting the timing and magnitude of
salinity fluctuations in estuarine waters (Cloern and Jassby
2012; Jiang et al. 2014). Biotic interactions are also changing
through the introduction of nonnative species (Vitousek et al.
1997; Cohen and Carlton 1998), some of which exhibit wider
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abiotic tolerances than native species (Hershner and Havens
2008). Experimental manipulations are needed to understand
the relative importance and interactive effects of abiotic and
biotic factors in determining estuarine plant distributions and
dynamics.

We sought to understand factors that determine the abun-
dance and distribution of native submerged aquatic vegetation
(SAV) currently, as well as under future scenarios of climate
change and water management in the heavily invaded San
Francisco Estuary (hereafter, SFE). In the open waters of
SFE, the low-salinity region known as Suisun Bay (Fig. 1)
contains over 485 ha (1200 acres) of native pondweeds in
the genus Stuckenia (Boyer et al. 2012). Dominated by
Stuckenia pectinata (sago pondweed), these beds are sparse
in the lower water column but form a canopy near the surface.
In SFE, S. pectinata beds occur along the migratory path for a
number of native fish species (Nichols et al. 1986), which may
forage on the abundant invertebrates on these plants (Boyer,
unpublished data).

The distribution of S. pectinata extends east (up-estuary)
into the western reaches of the Sacramento-San Joaquin Delta
(hereafter, Delta), where the dominant SAV species is Egeria
densa (Brazilian waterweed) (Santos et al. 2011). Likely in-
troduced through hobbyists’ aquaria (Marin et al. 2009), E.

densa in the Delta grows in large, dense mats that choke chan-
nels (Johnson 2006) and can form monospecific stands
(Santos et al. 2011), leading the CA Invasive Plant Council
and the CA Department of Food and Agriculture to categorize
it as a threat species. Unlike S. pectinata, E. densa forms dense
beds that can reduce local turbidity and create shadowy hiding
places for predators of small fish including native fish species
of concern (Anderson 1990; McGowan and Marchi 1998;
Nobriga et al. 2005; Lund et al. 2007).

The shift from S. pectinata to E. densa dominance from
Suisun Bay into the west Delta suggests that salinity changes
along this axis influence the abundance and distribution of the
two species. A few studies from other regions support this
observation; S. pectinata is known to tolerate salinities as high
as 12 (Teeter 1965; Hall et al. 1997), whereas salinity levels as
low as 5 have been shown to negatively affect E. densa in its
native Chile (Hauenstein and Ramirez 1986).

If salinity is a strong determinant of these species’ distribu-
tions currently, then predicted salinity increases in SFE would
be expected to alter their positions up-estuary along the salin-
ity gradient. Salinity could increase in Suisun Bay and the
Delta through several mechanisms stemming from climate
change and water management. Sea level rise and shifts in
magnitude and timing of snowmelt events are projected to

Fig. 1 Map of field sites in the upper San Francisco Estuary, CA, USA,
where water quality measurements were taken over 1 year. Ryer,Wheeler,
Chipps, and Winter Islands are S. pectinata-dominated sites. Winter
Island is near the confluence of the Sacramento and San Joaquin

Rivers, with the Delta region spreading east from this point. Sherman
Lake, Big Break, Fisherman’s Cut, and Decker Island are E. densa-
dominated sites
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increase salinity levels by 1–3 in the vicinity of Suisun Bay by
2090 (Knowles and Cayan 2002). In addition, extended pe-
riods of drought could lead to increased salt penetration not
counteracted by reservoir releases during the summer months.
There is also potential for levee failures through erosion or
earthquakes, leading to a higher volume of saline tidal waters
reaching up-estuary. Finally, management actions that inad-
vertently or deliberately reduce fresh water releases during
the dry season could increase salinity in this region. Summer
and fall salinity has already increased in the last 25 years due
to management of fresh water releases from water control
structures (Knowles and Cayan 2002; Contra Costa Water
District 2009). C&H Sugar Refining Company (Crockett,
CA) has long tracked salinity in order to access fresh water
for its refining process; its data show annual salinity intrusion
now occurs much earlier in the year in Suisun Bay (beginning
of March) compared to the early 1900s (beginning of July)
(Water Resources Department 2010).

Temperature is also projected to rise in the Estuary due to
climate change. Mean annual air temperatures are expected to
increase by 2 °C by 2090, and daily minimum and maximum
water temperatures are also projected to increase in
Suisun Bay and the western Delta (Knowles and
Cayan 2002; Wagner et al. 2011). Changes in tempera-
ture may not have a drastic effect on S. pectinata and
E. densa abundance and distributions in the near future,
as previous studies from other regions indicate both can
withstand temperatures of 30 °C or higher (Barko and
Smart 1981; Spencer and Anderson 1986; Pilon and
Santamaria 2002; Wersal et al. 2006). However, little
is known of temperature ranges or tolerances within
SAV beds of the upper San Francisco Estuary.

We used mesocosm experiments to elucidate the roles
of salinity and competition in determining distribution
and abundance of the dominant SAV species in Suisun
Bay (S. pectinata) and the Delta (E. densa) and to pre-
dict how patterns may shift in a future of higher salinity
within the region. The mesocosm experiments tested (1)
salinity tolerance of S. pectinata and E. densa alone and
in combination and (2) salinity tolerance of E. densa
under a range of temperatures. In addition, we used
salinity and temperature monitoring to describe the sea-
sonal ranges currently found within Suisun Bay and
west Delta SAV beds and to parameterize levels of
these factors to use in mesocosm experiments. We hy-
pothesized that E. densa is limited to the fresh waters of
the Delta by its low tolerance to salinity, while S.
pectinata is primarily found in the brackish waters of
Suisun Bay because it does not compete well with E.
densa in freshwater. In addition, we expected E. densa
to withstand high temperatures in freshwater but to be-
come increasingly stressed with increased salinity and
temperature together.

Methods

Study Region and Experimental Approach

The San Francisco Estuary is a hydrologically dynamic sys-
tem, receiving tidally drivenmarine inputs and riverine-driven
freshwater inputs with seasonal freshwater peaks during
winter and spring storms (Kimmerer 2002). Humans
have drastically altered the natural flow patterns of the
system by developing dams, diversions, and canals up-
stream (Nichols et al. 1986). Salinity variability is large-
ly driven by storm inputs in the winter and the amount
of freshwater released from reservoirs for export to
farms and cities of central and southern California in
the summer (Enright and Culberson 2009).

Within Suisun Bay, SAV is dominated by sago pondweed
(S. pectinata) according to molecular genetic analyses (Patten
and Boyer, unpublished data); although the plants are larger
and less branched than is typical of the species, the pondweed
family is known to be highly plastic (Kaplan 2002). S.
pectinata has a pseudo-annual life cycle, i.e., it is a
perennial clonal plant that also behaves as a vegetative-
ly reproducing plant annual (Van Wijk 1988). S.
pectinata produces overwintering tubers as well as
turions (buds) that are buried in the sediment in winter
and remain dormant until favorable conditions return
(Rybicki et al. 2001; Triest et al. 2010).

Heading east into the Delta, the SAV assemblage includes
native submerged aquatic plants, including S. pectinata,
Ceratophyllum demersum (coontail), Elodea canadensis
(common waterweed), and Potamogeton nodosus (American
pondweed), but also harbors numerous introduced spe-
cies, with E. densa the most invasive (Santos et al.
2011). E. densa is a successful invader around the
world, in part due to high phenotypic plasticity and its
abil i ty to reproduce asexually using fragments
(Haramoto and Ikusima 1988; McCollough 1997; Riis
et al. 2010; Santos et al. 2011).

Field Salinity and Temperature

We assessed the salinity and temperature ranges in four loca-
tions dominated by each species. S. pectinata-dominated sites
in Suisun Bay and the west Delta included Ryer, Wheeler,
Chipps, and Winter Islands (Fig. 1). E. densa-dominated sites
in the western and central Delta included Big Break, Sherman
Lake, Fisherman’s Cut, and Decker Island. Measurements
were taken every 15 min for over 1 year (starting October
2011) using Hobo Conductivity Data Loggers (Model U24-
001) deployed at ~30-cm depth. Occasional data gaps oc-
curred due to fouling, damage from boats, or loss of instru-
ments. Seasonal averages were calculated for all remaining
data until December 2012.
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Salinity Tolerance and Competition

A mesocosm experiment was conducted to determine the in-
fluence of salinity on growth of and competition between S.
pectinata and E. densa. There were four salinity treatments (0,
5, 10, 15) and three vegetation treatments (each species alone
or together), in a fully crossed design. Salinities were chosen
to represent the range in average salinity for summer/fall in
Suisun Bay (~2–9) and the Delta (~0–1), and ~5 units above
the highest average measured (~1 unit above maximum
Suisun Bay salinity; see BResults^). This was a replacement
design (Harper 1977) in which all mesocosms started with
~50 g (wet weight) of plant tissue, with the mixed treatment
containing ~25 g of each species (average biomass for all
tanks was 48 g ± 0.8 [SD]). Apical shoots were used for E.
densa (no roots), and whole shoots were used for S. pectinata
with 2–8 cm of root material (negligible weight). The exper-
iment lasted 3 months (June through August 2012), long
enough to detect interactions between species and short
enough to minimize artifacts of high biomass (Gibson et al.
1999).

The experiment was conducted in a greenhouse at the
Romberg Tiburon Center, San Francisco State University’s
estuarine research and teaching facility in Tiburon, CA.
Each treatment had 5 replicates for a total of 60 mesocosms
in a complete randomized design. S. pectinata shoots were
collected at Ryer Island and E. densa shoots were collected
at Decker Island, locations where each species forms mono-
specific stands. Plants were rinsed of all visible epibiota and
grown in 200-L translucent polyethylene tanks (55.9 cm D ×
87.6 cmL) in tap water at a depth of 60 cm. Premier For Plants
(Seachem in Madison, GA) was added to each mesocosm
prior to planting to remove chlorine/chloramine. Once per
week, salinity was measured and freshwater added to counter
evaporation. A sandy-loam terrestrial soil (American Stone
and Soil, San Rafael, CA) 7 cm deep was inoculated with field
sediment (equivalent to ~0.3 % of the total substrate) to in-
clude the natural microbial assemblage. Mesocosm tempera-
tures, measured 1×/week, ranged from 19 to 27 °C with an
average of 21 °C (0.5 SD). Mesocosms under the greenhouse
roof received solar irradiance of 438 ± 33 (SD)
μmol quanta m2 s−1, measured just below the water’s surface
weekly at midday, with a range of 221–599 across 60 individ-
ual measurements. These irradiance levels were considered
sufficient for growth, as they are well above those measured
i n Su i s u n Bay S . p e c t i n a t a b ed s ( r a n g e 76–
333 μmol quanta m2 s−1) near the surface at the lowest tides
(Boyer, unpublished data). The uncoated polycarbonate roof
is expected to have permitted UV transmission similar to field
conditions.

We placed Flourish Tabs (Seachem; 0.28 % nitrogen [N]
and 0.17 % phosphorus [P]) into the sediment to deliver
~0.02 μM N and 0.006 μM P over the 3 months. This was

intended to provide nutrient-sufficient conditions much lower
than in the field (Wilkerson et al. 2006). Still, epiphytic algal
biomass grew within the first month, and we added 2–5 Physa
sp. snails (from a culture tank of Delta plants) to each
mesocosm, which reduced algae from the tank walls and leaf
surfaces.

Percent change in biomass, shoot number, number of inflo-
rescences, and nodal root biomass were quantified at the end
of the experiment. Belowground biomass and nodal roots
were separated from aboveground tissues prior to any analy-
sis. All vegetative tissues were weighed wet, then dried at
50 °C for ~48 h and weighed. To calculate percent change in
dry aboveground biomass over the 3-month experiment, ini-
tial dry weight was estimated using a regression of final wet
and dry weights (S. pectinata: y = 0.0595x + 3.84, n = 29,
R2 = 0.84; E. densa: y = 0.0934x + 1.59, n = 19, R2 = 0.95).We
also examined change in wet E. densa mass, which showed
larger differences than drymass. Formixed culture treatments,
below- and aboveground (nodal) root, turion, and inflores-
cence data were doubled due to starting with half the biomass.

We used Kendall’s tau to detect responses to salinity of
each species grown in monoculture; this provided a measure
of strength (correlation) of the relationship between each re-
sponse variable and salinity (Sen 1968). A Mann-Whitney U
(MWU) test compared S. pectinata inflorescence production
between salinities of 0 and 5.

To evaluate competition, we tested overall performance of
S. pectinata with and without E. densa present using a multi-
variate analysis of variance (MANOVA) on growth responses
(aboveground biomass, shoot number, and root biomass). To
test whether competition was occurring at specific salinity
levels, t tests were used to compare mono- and mixed S.
pectinata cultures for shoot number, root biomass, nodal root
biomass, and turion and inflorescence counts. Aboveground
biomass did not meet parametric test assumptions and aMWU
test was substituted.

Due to high mortality in response to salinity, competition
patterns for E. densawere only assessed at the 0 salinity level.
t tests were used to analyze differences between mono- and
mixed cultures for shoot number, root biomass, and inflores-
cence counts. Shoot biomass data did not meet assumptions of
parametric tests and a MWU test was used instead.

Temperature and Salinity Experiment on E. densa

As E. densa can spread by fragments, these were used in
smaller mesocosms to test salinity effects in a temperature-
controlled room (not possible with S. pectinata). E. densa
was grown in 20-L aquaria at three temperatures that represent
typical average summer temperatures (22 °C; see BResults^)
and potential future temperatures of the Delta (26 and 30 °C),
which are also reached currently at times (see maximum
temperatures in Results). Temperature treatments were run
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separately with each experimental round lasting 6 weeks.
There were four salinity treatments (0, 5, 10, and 15) with five
replicates of each (20 mesocosms per temperature round) in a
randomized, complete block design. Experimental rounds
were conducted in December 2012 to January 2013 (22 °C),
February to March 2013 (26 °C), and April to May 2013
(30 °C). Four apical (tip) sections of E. densa shoots were
cut to 30 cm and planted in each mesocosm. Experimental
conditions were consistent with the salinity/competition
experiment except for container size and the artificial
light provided by six 34-watt grow lights on a 12-
h day/night cycle (~100 μM quanta m−2 s−1). The same
plant responses were measured at the beginning and end
of each round as in the salinity/competition experiment.
Fresh tissue (wet weight) was used to determine bio-
mass responses. For each experimental round, a one-
way ANOVA was used to test for the effect of block
(position in the room); finding none (p > 1.0), block
was excluded thereafter. To test the interaction of salin-
ity and temperature, a two-way ANOVA was used for
wet biomass. Scheirer-Ray-Hare (SRH) tests were used
for shoot and root length as those measures did not
meet assumptions of parametric tests.

Because each temperature treatment was run at a dif-
ferent time, temperature effects could have been con-
founded by other factors that differed with time; there-
fore, we ran a Bcontrol experiment^ with all temperature
treatments using Aqueon submersible aquarium heaters
(200 W) at one salinity level (5). There were 15
mesocosms (3 temperatures × 1 salinity × 5 replicates)
in this 6-week (July-August 2013) experiment. We visu-
ally compared patterns in this control experiment to the
treatment with a salinity of 5 from the separate temper-
ature runs in the experiment described above. In addi-
tion, two one-way ANOVAs were used to test temperature
effects on E. densa grown in the control experiment and in the
temperature experiment at a salinity of 5, each followed by a
Tukey’s HSD test.

Results

Field Salinity and Temperature

Field measurements reflected the expected west–east salinity
gradient from brackish in Suisun Bay to fresh in the Delta
(Table 1). Salinities in the S. pectinata-dominated sites in
Suisun Bay ranged from nearly fresh to brackish (0.5–13.9;
Table 1). Most E. densa-dominated sites remained near fresh
throughout the seasons (maximum 3.6 in fall; Table 1).
Seasonal temperature trends among all Suisun Bay and
Delta sites were similar, ranging from 9.4 to 30.9 °C across
sites (Table 1).

Salinity Tolerance and Competition Experiment

Salinity Responses in Monoculture

E. densa increased dramatically in biomass and shoot number
over the course of the 6-week experiment in freshwater (500–
1000 %, Fig. 2). However, at salinities above 0, E. densa
declined greatly in biomass, shoot number, and root biomass
(Fig. 2). At a salinity of 5, the biomass of E. densa was 10×
lower than in the freshwater treatment; no tissues remained at
salinities of 10 or 15.

When grown alone in freshwater, S. pectinata shoot and
root biomass also increased greatly (>10×) over time, as did
shoot number (4×) (Fig. 2). S. pectinata produced similar
biomass and shoot counts at a salinity of 5 as at 0 but less at
higher salinities (Fig. 2). Still, at a salinity of 10, S. pectinata
biomass doubled and shoot number increased sixfold from
initial levels. At a salinity of 15, biomass and shoot number
remained comparable to initial levels, although these were
new shoots that emerged following senescence of the original
shoots within the first month of the experiment. S. pectinata
produced 5× more inflorescences at a salinity of 5 than at 0
(average of 4.8 and 1 inflorescences, respectively; MWU test,
p = 0.05; Fig. 3c), but none were produced at salinities of 10 or
15. There was no difference in turion production with in-
creased salinity.

Performance in Mixed Culture

Overall, the presence of E. densa limited S. pectinata perfor-
mance across response variables (MANOVA, p = 0.001). In
freshwater, S. pectinata produced significantly less biomass in
mixed culture than in monoculture (t test, p = 0.007; Fig. 4a)
and tended to produce less root biomass (Fig. 4c). S. pectinata
also produced significantly more aboveground, adventitious
roots from its nodes (nodal roots) in the freshwater, mixed
culture (t test, p = 0.013; Fig. 3a). Further, in all salin-
ity treatments, S. pectinata tended to produce fewer
turions in mixed culture than in monoculture, signifi-
cantly so at salinities of 0 and 15 (t tests, p = 0.018
and 0.005, respectively; Fig. 3b). In contrast, at a salin-
ity of 5, S. pectinata produced ~2× greater shoot densities (t
test, p = 0.03) and tended to have greater root biomass in
mixed culture than in monoculture (Fig. 4 b, c).

Large declines in E. densa biomass at salinities above 0
(Fig. 4c) limited our comparisons of mixed versus monocul-
ture performance to the freshwater treatment. For this treat-
ment, trends were opposite to those of S. pectinata; E.
densa produced ~2× more wet biomass in mixed culture
than in monoculture (t test, p = 0.03, data not shown)
and also tended to produce greater dry biomass and
shoot numbers (Fig. 4 a, b).
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Table 1 Average and maximum
salinity and temperature from the
eight sites over time

Date range Average
salinity

Max
salinity

Average temp.
(°C)

Max temp.
(°C)

Ryer Island

Fall 2011 ND ND ND ND ND

Winter December 1–13, 2012 6.1 9.7 10.3 12.4

Spring April 1– May 30, 2012 2.0 6.7 18.7 21.2

Summer June 1 – August 30, 2012 6.6 10.2 20.9 26.7

Fall September 1 – November 30, 2012 9.0 11.4 17.8 22.8

Wheeler Island

Fall 2011 October 24 – November 30, 2011 3.3 8.1 14.2 27.6

Winter December 1, 2011 – February 28, 2012 3.6 8.0 9.8 15.3

Spring March 1 – May 30, 2012 1.0 5.9 15.7 23.4

Summer June 1 – July 31, 2012 4.7 8.9 21 29.3

Fall ND ND ND ND ND

Chipps Island

Fall 2011 October 24 – November 30, 2011 3.0 8.2 14.6 20.3

Winter December 1, 2011 – February 28, 2012 3.2 11.0 9.6 14.2

Spring March 1 – May 30, 2012 0.6 5.7 15.7 22.4

Summer June 1 – August 30, 2012 3.4 13.9 21.1 24.8

Fall September 1 – November 30, 2012 5.7 10.7 18.1 22.3

Winter Island

Fall 2011 October 24 – November 30, 2011 1.7 5.8 15.9 19.1

Winter December 1, 2011 – February 28, 2012 2.0 6.5 9.8 17.3

Spring March 1 – May 30, 2012 0.5 4.8 15.7 22.6

Summer June 1 – August 30, 2012 2.2 6.5 21.3 27.5

Fall September 1 – November 30, 2012 6.4 9.6 16.5 23.1

Sherman Lake

Fall 2011 October 24 – November 30, 2011 0.2 1.2 15.1 30.2

Winter December 1, 2011 – February 28, 2012 0.6 2.2 9.6 21.9

Spring ND ND ND ND ND

Summer June 1 – August 30, 2012 0.5 1.8 22.3 30.9

Fall September 01 – November 30, 2012 1.3 3.6 18.6 23.4

Big Break

Fall 2011 October 24 – November 30, 2011 0.2 0.6 15.1 21.8

Winter December 1, 2011 – February 28, 2012 0.5 1.7 9.7 17.3

Spring ND ND ND ND ND

Summer June 1 – August 30, 2012 0.03 0.5 23.2 27.6

Fall October 1 – November 30, 2012 0.5 1.7 17.6 21.2

Fisherman’s Cut

Fall 2011 ND ND ND ND ND

Winter December 1, 2011 – February 28, 2012 0.3 0.6 9.4 17.1

Spring March 1 – May 30, 2012 0.1 0.6 16.0 28.2

Summer June 1 – August 30, 2012 0.1 0.7 22.4 30.7

Fall ND ND ND ND ND

Decker Island

Fall 2011 October 24 – November 30, 2011 0.1 0.6 13.8 23.3

Winter December 1, 2011 – February 28, 2012 0.2 1.3 9.5 13.8

Spring March 1 – May 30, 2012 0.1 0.5 14.1 23.7

Summer June 1 – August 30, 2012 0.05 0.7 22.6 30.0

Fall September 1 – November 30, 2012 0.2 1.8 18.7 26.2

Data were derived from 2-hour averages of 15-minute intervals

ND represents periods where no data were available
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Temperature and Salinity Experiment on E. densa

When considering all rounds of the temperature experiment
together, there was a significant interaction between salinity
and temperature on E. densa wet biomass, shoot length, and
root length (all ANOVA and SRH tests, p < 0.001; Fig. 5),
owing to higher salinities strengthening negative effects of
increasing temperature.Within each of the 0, 5, and 10 salinity
levels, increasing temperatures negatively affected E. densa
growth, with greatest reductions in the 30 °C treatment, espe-
cially at salinities of 5 and 10 (Fig. 5). No roots were produced
at a salinity of 10, regardless of temperature, even though
aboveground biomass was present. At a salinity of 15, all plant
tissue at all temperatures died and decomposed (Fig. 5).

Results of the control experiment were visually compared
to those of the salinity level of 5 from the three experimental
rounds conducted at a single temperature. Although the mag-
nitude of effects was larger in the temperature experiment
compared to the control experiment, response patterns for
both experiments were very similar (Fig. 6). Change in wet
biomass in the control experiment demonstrated the same sig-
nificant difference by temperature as in the separate rounds of
the temperature experiment (p < 0.001 for both; Fig. 6). Root
length also produced similar trends in the control experiment
as in the separate temperature rounds (p = 0.01; Fig. 6). We
interpret this similarity in patterns as support that the separate-
ly run rounds of the temperature experiment can be considered

together as one experiment as described in the previous
paragraph.

Discussion

Abundance of the native pondweed, S. pectinata, declines as
salinities drop to near 0 in the upper San Francisco Estuary,
concomitant with the occurrence of increasingly dense stands
of the invader E. densa (Borgnis 2013). Competition can lead
to exclusion of stress tolerant species from more benign abi-
otic conditions in tidal marshes (Crain et al. 2004) and other
marine systems (Connell 1972; Paine 1974), but this possibil-
ity had not been considered in the Estuary’s SAV distributions.
We have provided evidence that E. densa is limited to the
Estuary’s fresh waters because it cannot endure higher
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salinities, with signs of severe stress at a salinity of 5 and
complete mortality at 10 or 15. In contrast, S. pectinata toler-
ates brackish waters and would probably be more abundant in
fresh waters were it not for competition with E. densa. These
findings have implications for management of the invader and
for expectations of submerged vegetation composition under
future scenarios of water management and climate change.

S. pectinata was highly productive at salinities of 0 and 5,
increasing fourfold in biomass and tenfold in shoot number,
and with substantial increases in root production over
12 weeks. Although S. pectinata was less productive at a
salinity of 10, it was able to double in biomass and increase
sixfold in shoot number. Even at a salinity of 15, S. pectinata
survived, with senescence followed by regrowth to initial bio-
mass levels within the second month of the experiment.
Notably, at a salinity of 5, aboveground biomass did not

decline as inflorescence production increased, as has been
observed for other aquatic plants (Van Zandt et al. 2003),
suggesting that conditions did not result in a stress-related
tradeoff between vegetative and reproductive allocation.
There was no flowering at higher salinities (10 and 15); thus,
a salinity of 5 may maximize both growth and reproductive
potential. Similarly, a previous study found that a salinity of 3
favored tuber production, and although S. pectinata could still
grow at a salinity of 12, a salinity of 15 reduced production or
proved fatal for many plants (Teeter et al. 1965).

Clearly, S. pectinata can grow well at low salinities, and
our data suggest that its current limited distribution in the
fresher waters of the Delta relates in part to the presence of
E. densa. Given that biomass accumulation was ~70 % lower
and significantly fewer turions were produced in the presence
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of E. densa, S. pectinatamay have limited potential for estab-
lishment and overwintering where E. densa co-occurs in fresh
waters. Notably, it was this 0 salinity, mixed culture treatment
that led to the highest production of adventitious roots at the
leaf nodes (nodal roots) of S. pectinata, suggesting a foraging
response under limited resource conditions (Keddy et al.
1998). Nodal root production in S. pectinata has been docu-
mented following an artificial addition of the plant hormone
ethylene (Summers and Jackson 1998). Because ethylene typ-
ically Binforms^ SAV of submergence (Jackson 1990;
Summers and Jackson 1998), this nodal root production may
have been linked to resource deficiencies typically exaggerated
by depth but in this case resulting from the vigorous growth
response of E. densa in the freshwater mixed culture.
Consistent with our findings, E. densa has been found to out-
compete native SAV species in other freshwater zones of estu-
aries around the world (Wells et al. 1997; Hofstra et al. 1999;
Hussner and Lösch 2005; Thiebaut 2007). Historic data are not
available for the SFE, but considering the strong competitive
abilities of E. densa, it is plausible that S. pectinata was more
common in the Delta region prior to E. densa introduction.

The high abundance of E. densa in the Delta is likely sup-
ported by strong competitive abilities, but its advantage di-
minishes with increasing salinity. At a salinity of 5, E. densa
biomass was greatly reduced and S. pectinata growth was
enhanced in the mixed species treatment (as % change in
shoot number and root biomass) over the monoculture.
Although E. densa could not compete per se at higher

salinities (where it did not survive), S. pectinata production
of fewer turions at high salinities in mixed culture relative to
monoculture suggests relict negative effects of E. densa pres-
ence. It may be that allelopathy is responsible for this result, as
has been suggested by studies with phytoplankton
(Vanderstukken et al. 2011). We cannot be certain of the
mechanism, but it is intriguing that E. densa’s negative effects
on S. pectinata occurred whether or not it survived.

Another potential stressor, temperature, was also important to
E. densa abundance in our study. Experimental temperatures
maintained at 22 °C, comparable to the highest average seasonal
temperatures at all eight sites in Suisun Bay and the Delta during
our study (21 to 23 °C), were very favorable for growth of E.
densa fragments in freshwater. However, we found that a
sustained increase of 4 °C or more was detrimental to E. densa
biomass at all salinities. Although Barko and Smart (1981)
found that temperatures up to 28 °C stimulated E. densa pro-
ductivity inMS, USA, our results are concordant with those of a
Japanese study in which E. densa growth was much reduced at
temperatures higher than 21 °C (Haramoto and Ikusima 1988).

Expectations Under Future Conditions

While E. densa is dominant throughout the Delta now, our
data suggest that rising salinity, resulting from sea level rise
or management actions (see Introduction), will force E. densa
to shift its distribution up-estuary in order to escape osmotic
stress. Interestingly, temperature increases, which could be
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exaggerated in already warmer inland areas, may present an
opposing gradient of favorable conditions, thus squeezing E.
densa into a limited space where both salinity and temperature
remain low enough.

In contrast, S. pectinata appears to possess the physiolog-
ical scope to withstand an average salinity increase of 5 and
thus may be able to maintain its current distribution within
Suisun Bay and the west Delta under increased salinity con-
ditions. We were not able to test temperature effects on S.
pectinata, but other studies have found it is able to withstand
temperatures up to 37 °C (Barko and Smart 1981; Spencer and
Anderson 1986; Pilon and Santamaria 2002); with this high
temperature tolerance, S. pectinata may be better suited than
E. densa for increased temperature conditions predicted with
climate change.

Our finding thatE. densa presence leads to large declines in
S. pectinata biomass in freshwater conditions suggests that
increased salinity in the Delta would allow additional space
for S. pectinata as E. densa dies back and can no longer main-
tain competitive exclusion. Hence, we predict that overall
acreage of S. pectinata will increase in the future due to per-
sistence within its current distribution as described above as
well as expansion into areas where E. densa is currently dom-
inant. That E. densa may restrict S. pectinata from fresher
areas also suggests that management of the invader (e.g.,
through applying herbicides as is done by the CA
Department of Parks and Recreation Division of Boating
and Waterways in areas of the central Delta; Johnson et al.
2006; Becerra 2011) could lead to greater acreage of S.
pectinata, perhaps enhanced with active restoration of the na-
tive. To better predict future distributions and conserve habitat
provided by native SAV, additional experimentation and con-
tinued field surveys are needed to understand species interac-
tions and multi-stressor effects.
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