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Abstract Despite the importance of coastal ecosystems for the global carbon budgets, knowledge of
their carbon storage capacity and the factors driving variability in storage capacity is still limited. Here we
provide an estimate on the magnitude and variability of carbon stocks within a widely distributed marine
foundation species throughout its distribution area in temperate Northern Hemisphere. We sampled 54
eelgrass (Zostera marina) meadows, spread across eight ocean margins and 36° of latitude, to determine
abiotic and biotic factors influencing organic carbon (Cog) stocks in Zostera marina sediments. The Cqg
stocks (integrated over 25-cm depth) showed a large variability and ranged from 318 to 26,523 g C/m? with
an average of 2,721 g C/m?. The projected Corg Stocks obtained by extrapolating over the top 1 m of sediment
ranged between 23.1 and 351.7 Mg C/ha, which is in line with estimates for other seagrasses and other blue
carbon ecosystems. Most of the variation in C,,q stocks was explained by five environmental variables (sediment
mud content, dry density and degree of sorting, and salinity and water depth), while plant attributes such as
biomass and shoot density were less important to C,,q stocks. Carbon isotopic signatures indicated that at most
sites <50% of the sediment carbon is derived from seagrass, which is lower than reported previously for
seagrass meadows. The high spatial carbon storage variability urges caution in extrapolating carbon storage
capacity between geographical areas as well as within and between seagrass species.
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1. Introduction

The oceans contain the largest carbon pool on Earth and have absorbed about one third of anthropogenic
CO, emissions through physical, chemical, and biological processes (Intergovernmental Panel on Climate
Change, 2014; Sabine et al., 2004). Coastal vegetated ecosystems play a fundamental role in carbon storage,
and the term blue carbon has been created to describe the carbon stored by marine ecosystems, seagrasses,
salt marshes, and mangroves, in particular (Herr et al., 2012). Altogether, these ecosystems cover only 0.2% of
the ocean floor but hold a sediment carbon storage equal to over half of the global green carbon storage
(carbon stored in terrestrial ecosystems and their soils) and up to 33% of the total oceanic CO, uptake
(Duarte, 2017; Duarte et al., 2005; Hemminga & Duarte, 2000; McLeod et al., 2011; Nellemann et al., 2009).
Furthermore, some marine ecosystems can store carbon up to millennial time scales, while the carbon stored
by terrestrial systems is usually sequestered up to decades (Mateo et al., 1997; Mazarrasa et al., 2017a;
Samper-Villarreal et al., 2018). However, the longevity of carbon storage varies considerably among species
and habitats within both marine and terrestrial systems, most likely due to species-specific traits such as
length of the growing season, chemical composition of the plant tissues and plant growth rate, and environ-
mental characteristics like temperature, disturbance, and sediment oxygenation (Mateo et al., 2006;
Mazarrasa et al,, 2018; Russel et al.,, 2013).

Within marine and estuarine ecosystems, seagrass sediment carbon storage is believed to average at
83,000 Mg/km?, thus equivalent to a total global blue carbon storage of 19.9 x 10° Mg (Fourqurean et al,,
2012; Macreadie et al., 2013). Despite the limited areal extent of seagrass meadows, their contribution to car-
bon accumulation per unit area is up to 3 orders of magnitude higher than that of terrestrial soils, primarily
due to the high capacity of seagrasses to trap particles by reducing water flow, wave energy, and sediment
resuspension (Agawin & Duarte, 2002; Bos et al., 2007; Fonseca & Cahalan, 1992; Gacia et al., 2002; Gacia &
Duarte, 2001; Hendriks et al., 2008; Kennedy & Bjork, 2009; Koch et al., 2006). High carbon accumulation rates
are also promoted by slow decomposition of organic material in the often hypoxic seagrass sediments, high
proportion of refractory organic compounds, and high C:N:P ratios. Together, these characteristics make sea-
grass material less labile and biodegradable and thus more easily stored than tissues of most other marine
angiosperms and algae (Enriquez et al.,, 1993; Fourqurean & Schrlau, 2003; Holmer et al., 2009; Kennedy
et al.,, 2010; Kristensen & Holmer, 2001; Pedersen et al., 2011; Vichkovitten & Holmer, 2004).

Seagrass habitats are highly productive ecosystems and most act as net sinks of carbon (Duarte & Cebrian,
1996; Duarte et al., 2010). Generally, seagrass species with high rates of production also support high sedi-
ment organic carbon stocks (the amount of carbon stored in the sediment down to a predefined depth, here-
after Cyrq stocks; Duarte et al., 2010; Hemminga & Duarte, 2000; Lavery et al., 2013; Rozaimi et al., 2016). In
addition, larger seagrass species tend to have higher production rates, higher carbon burial rates, and higher
sediment C,q stocks due to a taller plant canopy, which enhances particle trapping and growth of larger,
more persistent belowground tissues (Duarte & Chiscano, 1999; Lavery et al,, 2013). An extreme example
of this is Posidonia oceanica, an endemic Mediterranean seagrass species capable of high levels of carbon
sequestration in their extensive belowground rhizome mats, far exceeding the carbon sink capacity of other
seagrasses, as well as other blue carbon sources (Duarte et al., 2005; Duarte, Kennedy, et al., 2013; Fourqurean
et al,, 2012; Kennedy & Bjork, 2009; Lavery et al., 2013; Serrano et al., 2014, 2015). Furthermore, carbon stored
in the mats formed by P. oceanica date back up to 12,500 years, while Cqq stocks of other seagrass species,
such as Zostera marina and Cymodocea nodosa, have typically formed within shorter time scales of up to sev-
eral centuries of age (Alberto et al., 2001; Arnaud-Haond et al., 2012; Mateo et al., 1997; Reusch et al., 1999).

In addition to particulate organic carbon (hereafter POC) and seagrass biomass, the seagrass sediment Cyq
can be augmented by other carbon sources including phytoplankton, terrestrial plant detritus, macroalgae,
epiphytes, and benthic microalgae (Bouillon & Boschker, 2006; Fry et al., 1977; Fry & Sherr, 1984; Holmer
et al,, 2004; Kennedy et al., 2010, 2004; Moncreiff & Sullivan, 2001; Ricart et al.,, 2017; Réhr et al,, 2016).
These additional sources vary considerably in input and decomposition rates over time, thus influencing
the lability and magnitude of C,g stocks in seagrass sediments (Kennedy et al., 2010, 2004). In general,
benthic microalgae, epiphytes, and phytoplankton are more labile sources of C,, while the decay of macro-
phyte and terrestrial Co,q is usually slower (Bouillon & Boschker, 2006; Mateo et al., 2006; Vichkovitten &
Holmer, 2004). Recent studies have also emphasized how environmental conditions affect seagrass Cqrg
stocks (Dahl et al., 2016; Dahl, 2017; Miyajima et al., 2015; Roéhr et al., 2016; Serrano et al., 2016). For
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example, sediment density and grain size can influence the availability of oxygen in the sediment and there-
fore the rate of bacterial decomposition. Moreover, water temperature (Bouillon & Connolly, 2009; Clausen
et al,, 2014; Moore & Short, 2006), salinity (Watanabe & Kuwae, 2015), water depth (Serrano et al., 2014;
Samper-Villarreal et al., 2016), dissolved inorganic carbon concentration (Beer et al.,, 2014), and light availabil-
ity (Eriander, 2017; Serrano et al., 2014) all affect the balance of net community production and respiration,
with high temperature and fraction of inorganic carbon content leading to elevated rates of carbon minera-
lization, while increased salinity and water depth usually lead to lower production rates, hence, influencing
the formation of sediment Co,q stocks.

Although the contribution of seagrasses to global oceanic carbon storage has been quantitatively acknowl-
edged, most estimates come from just a few sites and seagrass species (Dahl et al., 2016; Greiner et al., 2013;
Gullstrom et al., 2018; Macreadie et al.,, 2013; Miyajima et al., 2015; Serrano et al., 2014, 2015; Réhr et al,, 2016).
Importantly, the anomalously high belowground accumulation of carbon in P. oceanica meadows might lead
to overestimation of the global seagrass Cqrq stock if values for this species are applied as broad proxies for
other seagrass species. Furthermore, interactions between seagrass species identity and bed characteristics
(e.g., shoot density, shoot size, and belowground structure) with local environmental drivers (e.g., sediment
characteristics, allochthonous inputs, and temperature) may confound global extrapolation of the total mag-
nitude of seagrass Cqrq stocks in the absence of standardized, broad-scale sampling, which incorporate
these covariates.

The foundation species eelgrass (Z. marina L.) is a relatively fast-growing seagrass species forming dense
meadows in both intertidal and subtidal areas across the temperate Northern Hemisphere (Moore & Short,
2006). Z. marina is among the most widespread seagrass species, covering a large geographic range
(Bostrém et al.,, 2014; Moore & Short, 2006; Spalding et al., 2003), thus potentially contributing significantly
to the global seagrass blue carbon stock. Z. marina is well known for its structural and functional role as a
key species in many marine ecosystems (e.g., Bostrom et al., 2014; Spalding et al., 2003), but despite its large
distribution area, information on local, regional, and global blue carbon stocks in Z. marina meadows is lim-
ited and generated from a handful of studies focusing on relatively small regional areas (Dahl et al., 2016;
Greiner et al,, 2013, 2016; Miyajima et al., 2015; Rohr et al,, 2016).

Here we quantified the magnitude of Z. marina sediment carbon storage across its full geographic range. To
do so, we coordinated a standardized sampling program spanning 36° of latitude and eight different ocean
margins and seas. Specifically, we compared the organic carbon stored in the sediment among eelgrass mea-
dows, identified the main carbon sources contributing to the sediment carbon stock, and explored the envir-
onmental variables driving the observed patterns. Finally, we compared the global carbon storage capacity of
Z. marina to that of terrestrial and coastal ecosystems. Specifically, we addressed the following questions:

1. What is the magnitude and variation of Z. marina sediment Cg,q stocks?

2. What are the abiotic and biotic environmental factors explaining the variation in Z. marina Cqq stocks
among regions?

3. What are the main carbon sources in Z. marina sediments, and do they vary systematically across and
within regions?

4. How do Northern Hemisphere Z. marina meadows rank globally in terms of magnitude of C,,4 stocks and
carbon storage capacity compared to other coastal and terrestrial carbon sink ecosystems?

2. Materials and Methods
2.1. Study Area

Plant and sediment samples were collected from 54 sites located in 13 countries (Bulgaria, Canada, Denmark,
Finland, France, Japan, Korea, Mexico, Norway, Portugal, Sweden, United Kingdom, and United States) across
eight ocean margins and seas (Eastern and Western Atlantic, Eastern and Western Pacific, Baltic Sea, Black
Sea, Mediterranean Sea, and Kattegat-Skagerrak) during summer (June to September) 2015 (Figure 1).
Water depth at the sites ranged from 0.5 to 3 m covering subtidal, shallow subtidal, and intertidal zones,
where the mean annual water temperature ranged from 7 to 20 °C and salinity ranged from 6.5 to 38.8.
The light periods at the sampling time ranged from 12 to 24 hr (Table S1 in the supporting information).
The samples were collected within the Zostera Experimental Network, ZEN (www.zenscience.org), a
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Figure 1. The study sites in the Northern Hemisphere (with sampled countries in green). Black dots indicate the sampling sites, except for in Bulgaria, Denmark,
Finland, and Sweden, in which one dot indicates multiple (n = 2-10) sites. Ocean margins and seas are labeled by numbers: 1 = Eastern Pacific; 2 = Western
Atlantic; 3 = Eastern Atlantic; 4 = Kattegat-Skagerrak; 5 = Baltic Sea; 6 = Black Sea; 7 = Mediterranean Sea; 8 = Western Pacific. For site names see Table S1.

collaboration between scientists addressing the structure and functioning of eelgrass ecosystems (see, e.g.,
Duffy et al., 2015).

2.2. Field Sampling

At each site, meadows in which Z. marina was the dominant seagrass species were chosen for sampling,
when monospecific meadows were not abundant. Although Z. marina was the dominant seagrass species,
15 sites had mixed meadows that included other species such as Ruppia spp., Potamogeton spp., Halodule
spp., Zostera noltii, and Zostera japonica, although only Z. marina was collected for sampling of the plant
variables. Z. marina aboveground and belowground biomass samples were collected with a corer (length
20 cm and diameter 25 cm) from three randomly chosen plots separated by 15 m within the interior
(5-10 m from the meadow edge) of the Z. marina bed. Shoot density was quantified within a 0.25-m?
frame. Sediment carbon was sampled using a 50-cm-long acrylic corer (diameter 5 cm, n = 3). Three
25-cm sediment samples were randomly collected from a single meadow within the sampling site. The
corer was manually forced to the depth of at least 25 cm, capped at both ends underwater and trans-
ported to the laboratory for further analysis. Due to limited resources, no samples were collected from
adjacent bare (unvegetated) sediments. Finally, samples (approximately 10 g of wet material) of plants
and algae (drift algae, other angiosperms, and epiphytes) considered to be the most likely alternative car-
bon sources were collected from each site for stable isotope analysis. The number of potential carbon
sources within sites varied between 2 and 6.

2.3. Plant Variables

In a local laboratory at each site, aboveground and belowground parts of Z. marina were separated and
rinsed with freshwater, then leaves and rhizomes were cleaned of epiphytes, detritus, and fauna using a scal-
pel. All plant material was dried for 48 hr at 60 °C. The belowground biomass was separated into living and
dead rhizomes, and each fraction was dried separately. All samples were analyzed for stable isotopes of car-
bon and nitrogen (*3C and '°N), organic carbon (OC), and particulate organic nitrogen (PON) content to
determine their relative contribution to the sediment C,4 stock. A pooled sample of two young leaves from
10 randomly selected shoots were used for the analysis of aboveground tissue, while samples of both living
and dead rhizomes were used for analysis of belowground tissue. All samples, including additional carbon
sources, were analyzed with Thermo Scientific, delta V advantage, isotope ratio mass spectrometer (with
Vienna Peedee belemnite as reference material) connected to elemental analyzer. Site-specific values for
measured plant variables are given in Table S2. Due to lack of in situ sampling of phytoplankton at the sites,
8'3C values from the literature were used in the stable isotope analysis (Conway-Cranos et al., 2015; Goering
et al, 1990; Jorgensen et al.,, 2007; Kang et al., 2015; Kajihara et al., 2010; Miyajima et al., 2015; Pernet et al.,
2012; Rohr et al, 2016; Tagliabue & Bopp, 2008; Tiselius & Fransson, 2015). The 5'3C values for plankton
selected from the literature for each site and used in the analysis are given in Table S3.
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2.4. Sediment and Environmental Variables

In the laboratory, sediment cores were sliced into five sections of 5 cm down to 25 cm. All visible plant mate-
rial and fauna were removed, and the sediment was homogenized. A 20-ml subsample taken from the 0- to 5-
cm section was used for grain size analysis, using a Malvern Mastersizer 3000 particle size analyzer to deter-
mine the sediment mud content (%). Sediment mud content was calculated as the size fraction (%) of clay
and silt (0-63 pm) present. Degree of sorting, calculated from the different sediment grain size fractions,
was used as a proxy for degree of exposure of the site (see Folk & Ward, 1957). A 5-ml subsample was then
taken from each sediment section and weighed before and after drying at 105 °C for 6 hr for determination of
basic sediment characteristics (sediment water content, dry bulk density, and porosity). These characteristics
were then used in calculations of sediment C,,4 stocks. The dried subsamples from each layer were homoge-
nized in a mortar and divided into two subsamples, from which one was used for analysis of sediment organic
content (loss on ignition, 4 hr in 520 °C), and the other for analysis of 5'3C, >N, PON, and organic carbon
(OQ), as described above for the plant material. Prior to analysis, the 0- to 5-cm sediment layers were acidified
to remove carbonate material that could cause possible bias in estimations of the sediment C,4 stocks. The
average sampling depth was calculated for each site, and values for mean annual water temperature and sali-
nity were obtained from the ZEN database for the different study regions (Table S1).

2.5. Sediment C,,4 Sources

The sediment surface §'>C values were used in the analysis of contribution of different carbon sources to the
sediment surface (0-5 cm) C,4 pool. The sediment surface section was used for the analysis as this was the
section in which other potential carbon sources were most likely to accumulate. To estimate the contribution
of the potential carbon sources to the sediment surface C,,q stock, the R function mixSIR.unknownGroups was
used (Ward et al., 2011). This method is recommended when the number of sources exceeds the number of
tracers +1, and the grouping of sources may be necessary to reduce bias in the posterior estimates. The func-
tion indicates the optimal number of groups and identifies groups by evaluating the likelihood of different
source groupings, while simultaneously estimating the proportional contribution of each source group to
the sediment surface Co,g pool. The number of groups and source membership per site was based on the fre-
quency of posterior cooccurrence, in order to identify the most parsimonious model formulation. However,
for some sites other groupings with only slightly lower posterior probabilities were selected to prioritize bio-
logical or ecological similarities between sources. To characterize the §'3C of Z. marina (n = 3), the '3C of Z.
marina leaves, living, and dead rhizomes were averaged within each site prior to the analysis, since they were
drawn from the same Z. marina shoots, and because all the Z. marina sources had statistically similar isotopic
signatures. The number of samples of other abundant C,, sources within the meadow (e.g., epiphytes, phy-
toplankton, and drift algae) varied between 1 and 4. When n = 1, we assumed an standard deviation = 0.5 to
reflect similar variability of the isotopic signatures as for the replicated sources of Coq in this study. Assuming
isotopic variability for samples with no replicates is statistically desirable, since the posterior draws depend
on the variance estimates and the extent to which the isotope mixing model precludes the contribution of
sources included in the model. If the isotope signatures of source have no variances, very few of the random
draws representing proportional contributions will be resampled, because most draws will have very low like-
lihoods (Ward et al.,, 2011). An advantage of Bayesian mixing models such as mixSIR.unknownGroups is that it
explicitly deal with variability among mixture and source isotopic signatures, accounting for error propaga-
tion in their estimates of source contributions to a mixture (Phillips et al., 2014). By default mixSIR.
unknownGroups incorporate a term for variation in consumer tracer values due to the sampling process
(process error). We also included a residual error term, since sediment sourcing mixtures integrate large quan-
tities of source particles, and it is realistic to assume that each mixture data point deviate from the mean of
the population due to causes of mixture variability not accounted by process error. We ran 100,000 posterior
draws for each model. Results are reported as percentage contribution from each source to the sediment sur-
face carbon pool.

2.6. C,4 Stock Calculations

Carbon density (mg C/cm?) was calculated by multiplying OC (mg/g DW) measured at each sediment layer
with the corresponding sediment dry density (g/cm>). The Corg stock was calculated by depth integration
of carbon density (0-25 cm) using calculations described in detail in Lavery et al. (2013) and given as Cog
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stock (g C/m?). The projected Corg stock for data from this study was estimated by multiplying the Co,q stock
by four to estimate the Co4 stocks to 100-cm depth and given as projected Co4 stock (t C/ha). It should be
noted that the Mediterranean value was derived from a single site. The projected C,q stock in Z. marina sedi-
ments at the different ocean margins and seas was estimated by extrapolating to 100-cm depth to compare
with previously reported C,,q stocks of other seagrass species, other blue carbon habitats (e.g., saltmarshes
and mangroves), and terrestrial ecosystems. The 25-cm depth has been previously shown to allow extrapola-
tion to the top 100 cm (e.g., Fourqurean et al., 2012; Lavery et al.,, 2013), although it is unlikely that the sedi-
ment C,q stock would stay stable throughout the 100-cm sediment profile and often either decreases or
increases with depth. While we recognize that these estimations represent extrapolation from a limited set
of regions and require some untested assumptions (namely, uncertainty in the stability of the depth profiles
of sediment C,4 stocks), they are required to directly compare the carbon storage capacity of Z. marina with
other known blue and green carbon stocks, as most of the values used for comparison in this study were
measured from the top 1-m section.

2.7. Predictors of Among-Site Variation in Carbon Stocks

To explain the among-site variation in carbon stocks, we statistically assessed the relative importance of
environmental variables (latitude, water depth, salinity, and water temperature), sediment variables (sedi-
ment density, sediment mud content, degree of sediment sorting, and '°N content of sediment) and charac-
teristics of seagrass meadows (>N content of Z. marina eelgrass leaves, PON content of Z. marina leaves, Z.
marina shoot density, aboveground Z. marina biomass, belowground Z. marina biomass, root: shoot ratio,
and Z marina contribution to the sediment surface Cqq pool). We used partial least squares (PLS) regression
in SIMCA 13.0.3 software (UMETRICS, Malmo, Sweden) to model projections to latent structures (Wold et al.,
2001) on untransformed data. PLS is a developed generalization of multiple linear regression, where latent
structures (i.e., variables with the best predictive power) are constructed based on linear associations
between a set of predictor variables (x) and the response variable (y). PLS regression modeling was used since
this technique can handle multicollinearity and large numbers of predictor variables (Carrascal et al., 2009).
This regression technique is applicable in analyses of various types of ecological data (e.g., Asplund et al.,
2011; Carrascal et al., 2009; Staveley et al., 2017) and has recently been used to address the influence of dif-
ferent types of predictors on carbon stocks (Dahl et al., 2016; Gullstrom et al., 2018). We also used principal
component analysis (PCA) to visualize general relationships between ocean margins or seas and environmen-
tal predictors (i.e., the five predictors having a major contribution to the PLS model) and the Cqq stock (g C/
m?). Prior to the PCA, data were transformed using Log(x + 1). A significance level of 95% (p < 0.05) was used
in the analysis.

3. Results
3.1. Magnitude of Sediment Carbon Stocks

Carbon density (mg C/cm?) in the upper 25 cm of the sediment showed marked differences between the
ocean margins and seas with site-specific averages ranging from 1.7 + 0.5 mg C/cm?, in the Baltic Sea area
to 37.9 + 8.5 mg C/cm?, in the Mediterranean Sea (Table 1). The average carbon density for all sites was
114 £ 43 mg C/cm® (Table 1). The average depth-integrated (0-25 cm) Co,q stock for all sites was
2,721 + 989 g C/m?, but the range of variation between sites (318 + 10 to 26,523 + 667 g C/m?) and regions
(578 + 43 t0 8,793 + 2,248 g C/m?) was substantial (Table 1 and Figures 2a and 3). The average Corg Stocks in
the regions per unit area were lowest in the Baltic and Black Seas and highest in the Kattegat-Skagerrak and
Mediterranean ocean margins, although sites within regions varied considerably (Table 1 and Figure 3). In
addition, Kattegat-Skagerrak and Mediterranean Sea had twofold to eightfold higher average Co4 stocks
(4,862 + 741 and 8,793 + 2,248 g C/m?, respectively) than the rest of the studied regions. The average Cqrq
stocks for the Atlantic and Pacific Ocean margins were moderate compared to C,q stocks at the Kattegat-
Skagerrak and Mediterranean regions and varied only modestly within each ocean margin (Table 1 and
Figure 3). Furthermore, the average C,.4 stocks were almost equal in Eastern and Western Atlantic
(1,384 £ 241 and 1,349 + 194 g C/m?, respectively), while average C,q stocks in Eastern and Western
Pacific Ocean margins were slightly higher (1,736 + 210 and 2,343 + 122 g C/m?, respectively). The average
projected Cqq stocks of the Z. marina sediments obtained by extrapolating to 100-cm depth ranged between
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Table 1
Summary of Carbon Storage by Region

Zostera marina Corg density SedOC Corg stock OC in biomass Total Cog Projected Cqrq stock

Ocean margin/sea n area (kmz) (mg C/cm3) (% DW) (g C/mz) (9 C/mz) (Mt) (Mg C/ha)
Baltic Sea 13 90 1.7£05 03+00 578 +43 79+8 0.05 231
Black Sea 2 765 2111 35+£1.2 725 £ 159 63 + 22 0.6 29.0
Eastern Atlantic 3 = 92+54 0.7 +£0.5 1384 + 241 129 + 35 = 554
Western Atlantic 5 374 45+0.8 03 +0.0 1349 + 194 100 + 15 0.5 54.0
Eastern Pacific 8 1,500 56+ 13 04 £ 0.1 1736 £ 210 107 = 14 28 69.4
Western Pacific 3 = 11.2+1.2 1.1 £0.1 2343 £ 122 86+ 9 = 93.7
Kattegatt-Skagerrak 19 757 19.3+39 25+06 4862 + 741 80+7 37 194.5
Mediterranean Sea 1 — 379+85 23+0.0 8793 £ 2248 62+8 — 351.7
Z. marina average 54 — 114 +43 14+04 2721 + 989 885 — 108.9

Note. Ocean margin/sea, number of sites included (n), Z. marina distribution area (km2), sediment organic carbon density (C g density, mg C/cm3), sediment
organic carbon content (SedOC, % DW), average organic carbon stocks in the upper 25 cm of the sediment (C(,rg stock; g C/m®), OC in living Z. marina biomass
(g C¢/m”), total organic carbon stocks in the region (total Corg; Mt), average projected organic carbon stocks extrapolated to 100-cm sediment depth (projected
Corg stock; Mg C/ha) across the study regions. Mean + SE (n = 1-19) is given. The areal estimates of the Z. marina coverage at the different regions were obtained
from Green and Short (2003), Luisetti et al. (2013), and Bostrom et al. (2014). SE = standard error.

23.1 (Baltic Sea) and 351.7 Mg C/ha (Mediterranean Sea; Table 1). The average projected Cq,q stock for all the
studied regions was 108.9 Mg C/ha (Table 1).

3.2. Environmental Factors Driving Among-Site and Regional Variation in Sediment C,,4 Stocks

Overall, we found that the sediment organic content was considerably higher in the Kattegat-Skagerrak and
Mediterranean Sea than in the other study regions (Table 2 and Figure 4a). In contrast, sediment mud content
varied widely across and within the ocean margins and was nearly 1 order of magnitude lower in the Baltic
Sea and in the Black Sea than the other regions (Table 2 and Figures 2b and 4b). Both sediment organic and
mud content were positively related to the sediment C,q stocks (g C/m?) (p < 0.0001, R* = 0.58, R = 0.53,
respectively), indicating the importance of sediment grain size distribution for the size of sediment Coq
stocks. Sediment mud content was also negatively related with the percent contribution of Z. marina to
the sediment surface Cqrq pool (p = 0.0287, R? = 0.09). Degree of sorting at the individual sites indicated that
our study areas encompassed both sheltered and exposed sites, with no consistent pattern in exposure
across the geographical range (Table 2).

The cross-validated variance (Q2 statistics; estimates of the level of predictability of the model) of the PLS
model was 51%, which is clearly higher than the 5% significance level. The cumulative fraction of the 15 envir-
onmental predictor variables combined (R%y cumulative) displayed a high degree of determination and
explained 62.5% of the variation in the sediment C,, stocks (g C/m?) across the study sites. Specifically, five
predictors, sediment mud content, sediment density, salinity, degree of sediment sorting, and water depth,
had variable influence on the projection values above 1, thereby being the major drivers (contributing more
than average on the model performance) of the variation in the sedimentary C,q stocks (Figure 5). Sediment
mud content, salinity, and degree of sediment sorting were all positively related to sedimentary Coq stocks,
while sediment density and water depth had negative relationships, respectively (Figure 5). The remaining
predictors had less than average influence on the model performance (Figure 5).

The PCA indicated a similar pattern across the different ocean margins, supporting the PLS results of five key
environmental indicators, except for Baltic Sea, which showed clear within-regional site similarity (Figure 6).
The PCA model explained a large part of the variation (eigenvalues of PC1 and PC2 were 78.2% and 10.7%,
respectively). PC1 and PC2 were both associated with the total variation of six variables, that is, sediment
dry density, mud content (%), water deptbh, salinity, degree of sorting, and Co,4 stock. For PC2, the variation
was explained in a ranking order by C,,4 stock, mud content (%), salinity, water depth, sediment dry density,
and degree of sorting.

3.3. Relative Contribution of Different Sources to Sediment Organic Carbon in Z. marina Beds

Z. marina was the main carbon source (contribution ranging between 60% and 94%) to the sediment surface
Corg POOI at eight sites, whereas it contributed only 3%-47% at the remaining 46 sites (Figure 2¢). The average
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Figure 2. (a) Corq stocks (g C/m2 + SE) in the top 25 cm of sediment at all sites. Note that value at site TH corresponds to
right y axis. (b) Sediment mud content (% + SE) and (c) the relative contribution of Z. marina tissues to the 3'3C of the
sediment surface layer (0-5 cm) at the sites. Box plots represents first and third quartiles and are shown with medians
(horizontal line), means (+). The whiskers represent the 2.5-97.5th percentiles. Z. marina contribution was calculated from
a pooled 3"3C value of aboveground and belowground tissue. Sites are ordered according to the magnitude of Cyg
stocks (from lowest to highest). In Figure 2a, the sites are colored according to the study region: Black = Black Sea;
brown = Baltic Sea; dark blue = Kattegat-Skagerrak; turquoise = Eastern Pacific; light blue = Western Atlantic; red = eastern
Atlantic; yellow = Western Pacific; purple = Mediterranean Sea. For site names, see Table S1.

Z. marina contribution to the sediment surface C,q pool was highest in the Black Sea (56%) and lowest (15%)
in the Western Pacific region. The average Z. marina contribution to the sediment surface Cqq pool at the
other regions ranged between 20% and 46% (Figure 4c). Other macrophyte species (Ruppia spp.
Potamogeton spp., Halodule spp., and Z. japonica) contributed 12-40% at the 15 sites in which they were
abundant. Phytoplankton contribution ranged between 6% and 97% and was the major (57-97%) source
at 12 sites (Figure S1). Contribution of macroalgae (12 sites) (Laminaria spp., Fucus spp., Chara spp., and
Dictyota spp.) was 12-49% and 10-59% for drifting algae (26 sites), respectively. Epiphyte carbon
contributed 12-20% at the four sites in which it was abundant. Terrestrial sources contributed 14-32% to
the Corg pool at five sites. The 8'3C of the surface sediment at the sites showed no consistent patterns
across the ocean margins (Table 2 and Figure 4d). The average 8'3C of Z. marina leaves and rhizomes in
the ocean margins showed higher variation than sediment surface samples, being heavily depleted in '>C
the Black Sea, while the §'3C at the other regions were more homogenous (Table 2 and Figure 4e). The
average 8"°N of Z. marina leaves was quite homogenous for the different ocean margins and seas being
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exhibit substantial regional and local variation in carbon storage (e.g., over
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E highest in Black Sea, Eastern and Western Pacific and lowest at Baltic Sea,
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100’ gins and seas spanning three continents and 36° of latitude shows that
T 8 o £ g o B S the Coq stock at the temperate Z. marina beds is notable and appears to
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ﬁ ig § g § 5 g g be on the same order of magnitude as beds dominated by many other
2 < e £ € % % species whose role in carbon dynamics are broadly appreciated
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2 2 & B B 3§ (Figure 7). Z. marina meadows in the temperate Northern Hemisphere
o= Yz £ 03
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eightfold differences between the Cqq stocks in the Mediterranean Sea

Figure 3. Seagrass (Z. marina) sediment organic carbon stocks (Corg g C¢/m?) and Kattegat-Skagerrak compared to the Baltic Sea). These differences
across the ocean margins and seas in the top 25 cm of the sediment. Box are at large explained by sediment characteristics, salinity, and depth. In
plots represents first and third quartiles and are shown with medians (hori-  the prackish waters of the Northern parts of the Baltic Sea, Z. marina grows

zontal line), means (+). Whiskers represent the 2.5-97.5th percentiles.
Number of sites per ocean margin/sea is given above the whiskers.

in relatively exposed locations (Bostrom et al., 2014). The exposed habitats
do not promote extensive carbon sequestration due to hydrodynamic
effects that export the organic matter produced in the meadows to further
adjacent locations. In addition, water depth is likely to have larger indirect effects on carbon storage affecting
other variables such as hydrodynamics, sediment resuspension, and erosion, which was not accounted for in
this study. In contrast, the meadows in, for example, the Kattegat-Skagerrak region usually grow in sheltered
depositional environments with relatively high production rates and accumulation of autochthonous organic
and inorganic particles. This variation in Z. marina C,q stocks among sites and regions makes it clear that pre-
vious global scale extrapolations of carbon storage in seagrass beds based on limited sampling must be
regarded as tentative and are likely in need of refining.

4.2, Comparing Magnitude of Carbon Stocks in Z. marina Versus Other Seagrasses

The average total Z. marina Coq stock in the upper 25 cm of the sediment ranged from 5.8 to 87.9 Mg C/ha
(average 27.2 Mg C/ha) and was lowest in the Baltic Sea and highest in Kattegat-Skagerrak region and at one
site in the Mediterranean. In addition, the highest carbon storage among all sites (265.2 + 0.67 Mg C/ha) in
this study was found at a single site TH (Thurgbund) in the Kattegat-Skagerrak, indicating a potential carbon
hot spot in the area. In addition, 9 out of 10 of sites exhibiting the highest C,q stocks were found in the
Kattegat-Skagerrak region, further supporting the role of this region as potential carbon hot spot, largely
explained by the high organic matter content sediments found in the highly productive and sheltered sea-
grass meadows in the region. Comparing the amount of carbon in living Z. marina tissue with that in the
upper 25 cm of the sediment, the aboveground and belowground Z. marina biomass contributed only
3.1% of the total carbon stock, on average. Thus, the sediment carbon content is much more important that
the standing biomass of Z. marina for the carbon stock and pool. This means that even though the areal
extent of Z. marina meadows along Eastern Pacific Ocean margin is twice that in Kattegat-Skagerrak (1,500
versus 757 km?, respectively), the meadows in Kattegat-Skagerrak contains 35% more carbon in total (2.76
and 3.74 x 10°Mg, respectively). This finding is supported by earlier studies in which seagrass carbon has
been shown to be a minor contributor to the seagrass Corg pool compared to the sediment Cqq stock
(e.g., Fourqurean et al,, 2012; Macreadie et al.,, 2013).

We projected the greatest average carbon storage in a region by extrapolating to 100-cm depth (351 Mg C/
ha), at the Mediterranean region, although this value was derived from a single site (FR), while the mean pro-
jected carbon storage across the study sites was 108.9 Mg C/ha (Figure 7). The average projected Z. marina
Corg stock from this study was over twofold higher than that reported for Australian seagrass sediments
(50.5 Mg C/ha; Lavery et al., 2013; Figure 7). Moreover, the average projected Z. marina Cqg stock for all
the studied regions was higher than the average for East and Southeast Asian seagrasses (72.4 Mg C/ha;
Miyajima et al,, 2015) and even higher than the global average estimated (70 Mg C/ha) by Kennedy and
Bjork (2009). In contrast, the average projected Coq stock from this study was ~23% lower than that
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Figure 4. The (a) organic content (organic matter, OM %), (b) mud content (%), (c) Z marina contribution to the upper 5 cm
of the sediment surface Cqrg pool (%), (d) 3'3C of sediment surface samples, and (e) 3'3C of Z marina leaves across the
ocean margins and sea box plots represents first and third quartiles and are shown with medians (horizontal line), means
(+). Whiskers represent the 2.5th to 97.5th percentiles. Boxes are not shown for sites in which n < 3.

Krause-Jensen, 2017; Hyndes et al., 2014). Earlier studies support this hypothesis; for example, Duarte and
Cebridn (1996) showed that ~25% of the net primary production in seagrass meadows is being exported.
Similarly, they estimated that ~30% and 19% of net primary production is being exported from mangroves
and salt marsh ecosystems. Moreover, recent studies have highlighted that macroalgae, which have not
previously been recognized as contributing to carbon storage, might make significant contributions to
blue carbon stocks as a carbon donors to adjacent blue carbon habitats (Hill et al., 2015; Krause-Jensen &
Duarte, 2016; Trevathan-Tackett et al, 2015). This exchange of organic matter across ecosystem
boundaries has inevitable consequences for the availability of the organic matter and burial,
mineralization, and consumption of organic carbon by microbial communities and higher trophic levels
(Barron et al., 2014; Barron & Duarte, 2015; Duarte & Krause-Jensen, 2017; Hyndes et al., 2014). Carbon
export is also highly important for the implementation of blue carbon offset credits due to the risk of
duplicating carbon sequestration estimates, both at source and sink ecosystems (Hejnowicz et al., 2015).

A recent study, encompassing both intertidal and subtidal and tropical and temperate seagrass ecosystems
showed that presence of seagrass resulted in an average difference in surface elevation rate of 31 mm/year,
compared to adjacent unvegetated sediments (Potouroglou et al., 2017). Furthermore, although not mea-
sured in this study, the structure of seagrass meadows can also be a potentially important predictor for the
magnitude and source of seagrass Corq stocks. Gullstrom et al. (2018) showed that in tropical East Africa, land-
scape configuration, along with sediment characteristics and seagrass biomass, was the most important pre-
dictor variables for seagrass sediment C,q stocks. Similarly, Ricart et al. (2017) showed that continuous P.
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Figure 5. Partial least square regression model coefficient plot showing the relative importance of different predictor vari-
ables. Predictor variables are ranked in order of importance (from the left to the right), in which the five variables left of the
dashed line have variable influence on the projection values above 1 (and hence an above average influence on Co g
stocks). Brown bars represent sediment characteristics, green bars represent seagrass-associated variables, and blue bars
are environmental variables. PON = particulate organic nitrogen.

oceanica meadows may store up to three times more Cq, per area, than seagrasses growing in small
patches, and it is likely that similar trends can be found also in other seagrass species. This variation was
explained by elevated rates of remineralization and resuspension, caused by reduced plant canopy in
small, patchy meadows. In addition, in patchy meadows, seston, and other allochthonous inputs were the
major sources of accumulating Cqrg, While in continuous meadows with higher C,4 stocks, the major Coq
source was of autochthonous origin. Various studies have reported higher Coq accumulation rates for

g Corg stock
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Figure 6. Principal component analysis showing how the eight regions are related to the most influential predictor vari-
ables (see Figure 5) and in terms of Corg stock data (i.e., the response variable). The horizontal axis (PC1) accounts for
78.2% of the total variance, while the vertical axis (PC2) accounts for 10.7% of the total variance.
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Figure 7. The total C,g stock (Mg C/ha) in top 100 cm of soil in terrestrial and blue carbon ecosystems (boreal forest, man-
groves, salt marshes, tropical forest, and temperate forest), other seagrass species (Posidonia sinuosa, Posidonia australis,
Halophila ovalis, Zostera mullerii, Halodule uninervis, Amphibolis antarctica, Cymodocea rotundata/Halodule uninervis,
Posidonia oceanica, Australian seagrass meadows; average, East and Southeast Asia; average, world seagrasses; median)
and Corg projected for Z. marina at the different ocean margins and seas in the study area (Baltic Sea, Black Sea, Eastern and
Western Atlantic, Eastern and Western Pacific, Kattegat-Skagerrak, and Mediterranean Sea). Number of sites per ocean
margin/sea is given next to the bars. 1 = this study; 2 = Lavery et al. (2013); 3 = Miyajima et al. (2015); 4 = Fourqurean et al.
(2012); 5 = Serrano et al. (2014); 6 = Duarte, Losada, et al. (2013; derived from Siikamaki et al., 2012; Pendleton et al., 2012);
7 = Kennedy and Bjérk (2009; derived from Duarte & Cebrian, 1996; Duarte & Chiscano, 1999; Janzen, 2004; Duarte et al.,
2005).

seagrass sediments than predicted from plant production alone, indicating that allochthonous sources must
be important contributors to the seagrass sediment Cog stocks (Bouillon & Boschker, 2006; Kennedy et al,,
2010). Kennedy et al. (2010) compiled data from 123 seagrass meadows and showed that on average, ~50%
of Corg in seagrass sediments was of autochthonous origin. In our study, Z. marina derived detritus was the
major contributor (60-94%) to the sediment surface C,.g pool at only 8 out of 54 sites contributing on
average 30.5 £ 3.1% to the sediment surface C,4 pool across the study regions. Although results from the
PLS analysis revealed that Z marina contribution to the sediment surface Cog pool explained only
relatively small fraction of the variation in Cog stocks, we note that a sizable fraction of the Cqq at many
sites was derived from seagrass, although the proportion of this fraction varied considerably among sites
(Figure 2c). Furthermore, even though Z. marina contribution was not among the most important
predictors, the presence of Z. marina meadows still enhances the production of epiphytes, microalgae, and
macroalgae, traps allochthonous organic particles, and reduces sediment resuspension and water flow,
thus resulting in high sequestration contributing to the formation of sediment C,4 stocks (see Figure S14
for phytoplankton contribution to the sediment surface Cq,g pool). In addition, due to limited resources,
we could not date our sediment cores and interpret the results from stable isotope mixing model in
context of the information given by dating the core. The analysis of source contribution to the sediment
Corg Pool was run only for the surface layer, which gives us a proxy of the potential contribution of
different carbon sources in the most recent times, but does not really hold information about the past. The
8'3C value typically gets closer to 5'3C of seagrass in the deeper layers especially in the high Corg Stock
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sites (Fourqurean & Schrlau, 2003), but in the absence of information on the age and stability of the sediment
studied and analysis of the full sediment & '3C profile, we cannot make solid conclusions about the contribu-
tions of the different carbon sources to the meadow in long term.

4.2, Consequences of Seagrass Loss for Global Blue Carbon Stocks

To date, vast areas of blue carbon ecosystems have been lost due to changes in land use and human-induced
eutrophication. Mcleod et al. (2011) reported that 0.7-7% of the blue carbon ecosystems are lost annually. In
the past 130 years, ~29% of the global seagrass area has been lost, and in many regions, these rates are accel-
erating (Bertelli et al., 2017; Furman et al., 2015; Marba et al,, 2015; Orth et al., 2006; Waycott et al., 2009). In
contrast, salt marsh loss rates have remained relatively stable and loss rates for mangrove forests have slowed
from 1.04%/year in the 1980s to 0.66%/year in 2000 (Waycott et al., 2009). The consequences of loss of blue
carbon ecosystems to the oceanic carbon flux are still in need to be quantified, as there is likely to be substan-
tial variation between different regions and habitats. Furthermore, the fate and magnitude of inorganic car-
bon stocks stored in seagrass sediments have largely been overlooked by previous studies, although its
contribution to sediment carbon pool in some regions have been shown to exceed that of organic carbon
stocks by several factors (Mazarrasa et al, 2015). Using the annual loss rates for seagrass ecosystems,
Pendleton et al. (2012) calculated a conservative estimate of 50- to 330 x 10°-Mg CO, emissions from sea-
grass habitats annually, equivalent to approximately 33% of the total blue carbon emissions and economic
damages. Furthermore, Macreadie et al. (2013) showed that disturbed P. australis meadows had up to 72%
lower sediment Cqq stocks compared to the sediments in adjacent undisturbed seagrass meadows.
Similarly, Marba et al. (2015) showed that in sites experiencing a permanent seagrass vegetation loss, also
90 years’ worth of carbon accumulation was lost through erosion of the sediments. The extensive loss of sedi-
ment C,q stock in the disturbed seagrass meadows was most likely being caused by microbial priming, an
activation of previously dormant bacteria under the altered environmental conditions causing a release of
ancient carbon stored in the sediments (e.g., Trevathan-Tackett et al., 2018).

Our results reveal that the magnitude of Z. marina Cqq stocks is comparable not only to other seagrass spe-
cies but also to other blue carbon habitats such as salt marshes and mangrove forests. The circumpolar dis-
tribution of Z. marina meadows suggests that the overall value of the total carbon stored in the world’s Z.
marina ecosystems is high. This finding is corroborated by the fact that the global areal extent of Z. marina
could potentially be much more extensive than currently mapped (Gattuso et al., 2006). Z. marina meadows
of the Northern Hemisphere have suffered from similar losses as seagrass meadows at other regions, for
example, as a consequence of wasting disease caused by pathogenic strain of Labyrinthula (Short et al.,
1987). The Danish Z. marina meadows in our suggested carbon hot spot, Kattegat-Skagerrak, were reduced
by 80-90% in the beginning of 1930s (Rasmussen, 1977). Z. marina had recolonized many coastal areas by
the 1970s, but new losses have occurred in the area since the 1980s, mainly due to eutrophication, and
the Z. marina distribution in Denmark today is only around 20-25% of the historic distribution (Frederiksen
etal., 2004). Similar losses have occurred along the Swedish Skagerrak coast, where over 60% of the Z. marina
has vanished since the 1980s (equivalent to 125 km?) and the losses continue today (Baden et al., 2003).
Despite improvements in the nutrient status and water quality in these regions, the restoration success of
seagrasses has until now remained poor. Moksnes et al. (2018) has suggested that local regime shifts result
in increased sediment resuspension and accumulation of drifting algae, and by these negative feedback
mechanisms preventing the successful recovery and restoration of the meadows in the region. Similar trend
has been observed in other parts of the world where a recent study by van Katwijk et al. (2015) shows a suc-
cess rate of only 37% for seagrass restoration projects globally.

Although the loss rates are accelerating, neither seagrasses nor any of the other blue carbon ecosystems were
until recently included in carbon trading programs such as REDD (Reduced emissions from deforestation and
degradation) and REDD+ (Mcleod et al.,, 2011; Pendleton et al., 2012). However, some promising initiative to
involve Blue Carbon ecosystems in the carbon trading programs have been made, such as the Andalusian
Law of Climate Change and Verified Carbon Standard, which now include an option for Wetlands
Restoration and Conservation. In addition, economic incentives such as PES (Payment for Ecosystem services)
could serve as financial initiations for protection of coastal carbon (Hejnowicz et al., 2015; Locatelli et al., 2014;
Murray et al.,, 2011). However, the cost of these losses in terms of carbon storage cannot be accurately
assessed without knowing the C,q stock of the same areas in the absence of seagrass. Although seagrass
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presence can increase the Co,4 in sediments (Dahl et al., 2016; Marba et al., 2015; Miyajima et al., 2015; Ricart
et al, 2015; Rozaimi et al., 2016; Samper-Villarreal et al., 2018), in some systems vegetated and unvegetated
sediments have similar organic matter content (Richardson et al., 2008). The comparison can be difficult to
accurately assess, however, because simply sampling bare patches outside of seagrass beds may not provide
adequate reference sites due to environmental or sedimentary characteristics that differ from those in the
beds, and the proximity of seagrasses may also alter other adjacent ecosystems. While we recognize this defi-
ciency and note that we cannot calculate exactly how much carbon the presence of seagrasses adds to the
system, these data suggest that the proportion is likely to be substantial, although varying considerably
among sites and regions.

Unfortunately, the current lack of acknowledgement and protection of seagrass meadows and the ecosys-
tems services they provide, both in terms of carbon sequestration and other services, such as nursery habitat,
nutrient accumulation, and sediment stabilization (e.g., Cole & Moksnes, 2016; Hejnowicz et al., 2015; Luisetti
et al., 2013; Maxwell et al., 2016; Nordlund et al.,, 2016; Unsworth & Cullen-Unsworth, 2013), suggest that the
global decline of seagrass meadows will most likely continue. The poor restoration success of seagrass
meadows globally urges to protect the meadows, which still persist. We emphasize that there is an urgent
need to reverse the current trend of losses of blue carbon ecosystems by conserving and involving blue
carbon habitats as part of climate change mitigation programs and global carbon budgeting. Both in a global
and regional contexts, there are still many unknowns in blue carbon research that must be defined. The most
important gaps include determination of the total areal extent of global blue carbon storage zones, examina-
tion of the fate of both inorganic and organic carbon exported from existing and disturbed blue carbon eco-
systems, seascape connectivity between blue carbon ecosystems, and finally identification of the possible
thresholds limiting ecosystem shifts (Maxwell et al.,, 2016; Van der Heide et al,, 2011). By answering these
questions, we could potentially create incentives to contribute to more relevant policy making and legislation
and identify areas in which restoration and conservation could benefit both the management of atmospheric
CO, emissions and the protection of biodiversity and other ecosystem services that these valuable
ecosystems sustain.
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Erratum

In the originally published version of this article, Katharyn Boyer was omitted from the list of authors.

Additionally, the number cited in Figure 7 for world seagrass average was incorrect, and a table in the

Supporting Information was duplicated. These errors have been corrected, and this may be considered the

authoritative version of record.
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